## US2066

## $100 \times 32$ <br> OLED/PLED Segment/Common Driver with Controller For 20x4 Characters

## 1 General Description

US2066 is a single-chip CMOS OLED/PLED driver with controller for organic/polymer light emitting diode dot-matrix graphic display. It consists of 100 segments and 34 commons while it can display $1,2,3$, or 4 lines with $5 \times 8$ or $6 \times 8$ dots format. This IC is designed for Common Cathode type OLED/PLED panel.

US2066 displays character directly from its internal 10,240 bits ( 256 characters $\times 5 \times 8$ dots) Character Generator ROM (CGROM). All the character codes are stored in the 640 bits ( 80 characters) Data Display RAM (DDRAM). User defined character can be loaded via 512 bits ( 8 characters) Character Generator RAM (CGRAM). Data/Commands are sent from general MCU through software selectable 4-/8-bit 68XX/80XX series compatible Parallel Interface, $\mathrm{I}^{2} \mathrm{C}$ interface or Serial Peripheral Interfaces.

The contrast control and oscillator which embedded in US2066 reduce the number of external components. With the special design on minimizing power consumption, US2066 is suitable for portable applications requiring a compact size.

## 2 Features

- Resolution: $100 \times 32$ dot matrix panel
- Power supply (2 options selected by hardware configuration):
[Low voltage I/O application]
- $\mathrm{V}_{\text {DDIO }}=2.4 \mathrm{~V}$ to 3.6 V
(MCU interface logic level)
- $V_{D D}=2.4 \mathrm{~V}$ to $\mathrm{V}_{\text {DDIO }}$
(Low voltage power supply)
- $\mathrm{V}_{\mathrm{CC}}=8.0 \mathrm{~V}$ to 15.0 V
(Panel driving power supply)
[5V I/O application]
- $\mathrm{V}_{\text {DDIO }}=4.4 \mathrm{~V}$ to 5.5 V
(MCU interface logic level)
- $\mathrm{V}_{\mathrm{DD}}$ is internally regulated, a stabilizing capacitor is needed
- $\mathrm{V}_{\mathrm{CC}}=8.0 \mathrm{~V}$ to 15.0 V
(Panel driving power supply)
- Segment maximum source current: 450uA
- Common maximum sink current: 45 mA
- 256-step Contrast Control
- Pin selectable MCU Interfaces:
- 4 / 8-bit 6800/8080-series parallel interface
- Serial Peripheral Interface
- $\mathrm{I}^{2} \mathrm{C}$ Interface (Up to $400 \mathrm{kbit} / \mathrm{s}$ )
- On-Chip Memories
- Character Generator ROM (CGROM): 10,240 bits ( 256 characters $\times 5 \times 8$ dot)
- Character Generator RAM (CGRAM): $64 \times 8$ bits ( 8 characters)
- Display Data RAM (DDRAM): $80 \times 8$ bits ( 80 characters max.)
- Selectable duty cycle: $1 / 8,1 / 16,1 / 24,1 / 32$
- $1,2,3$ or 4 lines with $5 \times 8$ or $6 \times 8$ dots format display
- 3 sets of CGROM (ROM A / B / C - hardware pin selectable)
- Row Re-mapping and Column Re-mapping
- Double-height Font characters
- Bi-direction shift function
- All character reverse display
- Display shift per line
- Automatic power on reset
- Screen saving continuous scrolling function in horizontal direction (character by character)
- Screen saving fade in / out feature
- Programmable Frame Frequency
- Smart Cross-talk compensation scheme
- On-Chip Oscillator
- Chip layout for COG
- Wide range of operating temperatures: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$


### 2.1 5-dot / 6-dot font width

Table 2-1: 5-dot / 6-dot font width

| Display Line Numbers | Duty Ratio | 5-dot font width | 6-dot font width |
| :---: | :---: | :---: | :---: |
|  |  | Displayable Characters | Displayable Characters |
| 1 | 1/8 | 1 lines of 20 characters | 1 lines of 16 characters |
| 2 | 1/16 | 2 lines of 20 characters | 2 lines of 16 characters |
| 3 | 1/24 | 3 lines of 20 characters | 3 lines of 16 characters |
| 4 | 1/32 | 4 lines of 20 characters | 4 lines of 16 characters |



Figure 3-1: US2066 Block Diagram

## 4 Pin Descriptions

## Key:

| I = Input | NC = Not Connected |
| :---: | :---: |
| O =Output | Pull LOW = connect to Ground |
| $\mathrm{I} / \mathrm{O}=\mathrm{Bi}$-directional (input/output) | Pull HIGH = connect to $\mathrm{V}_{\text {DDIO }}$ |
| $\mathrm{P}=$ Power pin |  |

Table 4-1 : US2066 Pin Description



WiseChip Semiconductor Inc.

| Pin Name | Pin Type | Description |
| :---: | :---: | :---: |
| GPIO | I/O | It is a GPIO pin. Details refer to OLED command DCh. |
| VSL | P | This is segment voltage (output low level) reference pin. <br> When external VSL is not used, this pin should be left open. <br> When external VSL is used, connect with resistor and diode to ground (details depend on application). |
| CL | I | External clock input pin. <br> When internal clock is enable (i.e. pull HIGH in CLS pin), this pin is not used and should be connected to Ground. <br> When internal clock is disable (i.e. pull LOW is CLS pin), this pin is the external clock source input pin. |
| CLS | I | Internal clock selection pin. <br> When this pin is pulled HIGH, internal oscillator is enabled (normal operation). <br> When this pin is pulled LOW, an external clock signal should be connected to CL. |
| CS\# | I | This pin is the chip select input connecting to the MCU. <br> The chip is enabled for MCU communication only when CS\# is pulled LOW (active LOW). <br> In $\mathrm{I}^{2} \mathrm{C}$ mode, this pin must connect to $\mathrm{V}_{\mathrm{Ss}}$. |
| RES\# | I | This pin is reset signal input. <br> When the pin is pulled LOW, initialization of the chip is executed. Keep this pin pull HIGH during normal operation. |
| D/C\# | I | This pin is Data/Command control pin connecting to the MCU. <br> When the pin is pulled HIGH, the data at $D[7: 0]$ will be interpreted as data. <br> When the pin is pulled LOW, the data at D[7:0] will be transferred to a command register. <br> In $\mathrm{I}^{2} \mathrm{C}$ mode, this pin acts as SAO for slave address selection. <br> When serial interface is selected, this pin must be connected to $\mathrm{V}_{\mathrm{SS}}$. |
| R/W\# (WR\#) | I | This pin is read / write control input pin connecting to the MCU interface. <br> When 6800 interface mode is selected, this pin will be used as Read/Write (R/W\#) selection input. Read mode will be carried out when this pin is pulled HIGH and write mode when LOW. <br> When 8080 interface mode is selected, this pin will be the Write (WR\#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected. <br> When serial or $\mathrm{I}^{2} \mathrm{C}$ interface is selected, this pin must be connected to $\mathrm{V}_{\mathrm{s}}$. |
| E (RD\#) | I | This pin is MCU interface input. <br> When 6800 interface mode is selected, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled HIGH and the chip is selected. <br> When 8080 interface mode is selected, this pin receives the Read (RD\#) signal. Read operation is initiated when this pin is pulled LOW and the chip is selected. <br> When serial or $\mathrm{I}^{2} \mathrm{C}$ interface is selected, this pin must be connected to $\mathrm{V}_{\mathrm{s}}$. |


| Pin Name | Pin Type | Description |
| :--- | :---: | :--- |
| D[7:0] | I/O | These pins are bi-directional data bus connecting to the MCU data bus. <br> Unused pins are recommended to tie LOW. <br> When serial interface mode is selected, D0 will be the serial clock input: SCLK; D1 will be the <br> serial data input: SID and D2 will be the serial data output: SOD. <br> When I ${ }^{2}$ C mode is selected, D2, D1 should be tied together and serve as SDA ${ }_{\text {out, }}$ SDA in in <br> application and D0 is the serial clock input, SCL. |
| FR | O | This pin outputs RAM write synchronization signal. Proper timing between MCU data writing <br> and frame display timing can be achieved to prevent tearing effect. <br> It should be kept NC if it is not used. <br> Refer to Section 5.4 for details. |
| SEG0 ~ <br> SEG99 | O | These pins provide the OLED segment driving signals. These pins are V SS state when display <br> is OFF. |
| COM0 ~ <br> COM31 | O | These pins provide the Common switch signals to the OLED panel. These pins are in high <br> impedance state when display is OFF. |
| C[1:0] | - | These pins are reserved. Nothing should be connected to these pins, nor are they connected <br> together. |
| TR[9:0] | - | These pins are reserved. Nothing should be connected to these pins, nor are they connected <br> together. |

## 5 Functional Block Descriptions

### 5.1 MCU Interface selection

US2066 has all four kinds of interface type with MCU: $\mathrm{I}^{2} \mathrm{C}$, serial, 4 -bit bus and 8 -bit bus. Different MCU modes can be set by hardware selection on BS[2:0] pins; refer to Table 4-2 for BS[2:0] setting. This chip MCU interface consists of 8 data pins and 5 control pins. The pin assignment at different interface mode is summarized in Table 5-1.

Table 5-1 : MCU interface assignment under different bus interface mode

| Pin Name | Data/Command Interface |  |  |  |  |  |  |  | Control Signal |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Interface | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | E | R/W\# | CS\# | D/C\# | RES\# |
| 4-bit 6800 | D[7:4] |  |  |  | Tie LOW |  |  |  | E | R/W\# | CS\# | D/C\# | RES\# |
| 4-bit 8080 | D[7:4] |  |  |  | Tie LOW |  |  |  | RD\# | WR\# | CS\# | D/C\# | RES\# |
| 8-bit 6800 | D[7:0] |  |  |  |  |  |  |  | E | R/W\# | CS\# | D/C\# | RES\# |
| 8-bit 8080 | D[7:0] |  |  |  |  |  |  |  | RD\# | WR\# | CS\# | D/C\# | RES\# |
| Serial Interface | Tie LOW |  |  |  |  | SOD | SID | SCLK | Tie L | W | CS\# | Tie LOW | RES\# |
| $\mathrm{I}^{2} \mathrm{C}$ | Tie LOW |  |  |  |  | SDA ${ }_{\text {OUT }}$ | $\mathrm{SDA}_{\text {IN }}$ | SCL | Tie L |  |  | SA0 | RES\# |

### 5.1.1 MCU Parallel 6800-series Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), R/W\#, D/C\#, E and CS\#.
A LOW in R/W\# indicates WRITE operation and HIGH in R/W\# indicates READ operation.
A LOW in D/C\# indicates COMMAND read/write and HIGH in D/C\# indicates DATA read/write.
The E input serves as data latch signal while CS\# is LOW. Data is latched at the falling edge of E signal.

Table 5-2 : Control pins of $\mathbf{6 8 0 0}$ interface

| Function | E | R/W <br> \# | CS\# | D/C\# |
| :--- | :--- | :--- | :--- | :--- |
| Write command | $\downarrow$ | L | L | L |
| Read status | $\downarrow$ | H | L | L |
| Write data | $\downarrow$ | L | L | H |
| Read data | $\downarrow$ | H | L | H |

## Note

${ }^{(1)} \downarrow$ stands for falling edge of signal
H stands for HIGH in signal
L stands for LOW in signal
In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 5-1.

Figure 5-1: Data read back procedure - insertion of dummy read


In case of 4-bit bus mode, data transfer is performed by two times to transfer 1 byte data.
When interfacing data length is 4 -bit, only 4 ports, $\mathrm{D}[7: 4]$, are used as data bus; the unused 4 ports, $\mathrm{D}[3: 0]$ are recommended to tie to GND.
At first higher 4-bit (in case of 8-bit bus mode, the contents of D4 - D7) are transferred, and then lower 4-bit (in case of 8-bit bus mode, the contents of D0-D3) are transferred. So transfer is performed by two times.

When interfacing data length is 8-bit, transfer is performed at a time through 8 ports, from $\mathrm{D}[7: 0]$.

### 5.1.2 MCU Parallel 8080-series Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), RD\#, WR\#, D/C\# and CS\#.
A LOW in D/C\# indicates COMMAND read/write and HIGH in D/C\# indicates DATA read/write.
A rising edge of RD\# input serves as a data READ latch signal while CS\# is kept LOW.
A rising edge of WR\# input serves as a data/command WRITE latch signal while CS\# is kept LOW.

Figure 5-2: Example of Write procedure in $\mathbf{8 0 8 0}$ parallel interface mode


Figure 5-3: Example of Read procedure in $\mathbf{8 0 8 0}$ parallel interface mode


Table 5-3 : Control pins of $\mathbf{8 0 8 0}$ interface

| Function | RD\# | WR\# | CS\# | D/C\# |
| :--- | :--- | :--- | :--- | :--- |
| Write command | H | $\uparrow$ | L | L |
| Read status | $\uparrow$ | H | L | L |
| Write data | H | $\uparrow$ | L | H |
| Read data | $\uparrow$ | H | L | H |

## Note

(1) $\uparrow$ stands for rising edge of signal
(2) H stands for HIGH in signal

## (3) L stands for LOW in signal

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 5-4.

Figure 5-4: Display data read back procedure - insertion of dummy read


### 5.1.3 Serial Interface

When serial interface mode is started, all the three ports, SCLK (synchronizing transfer clock; i.e. D0), SID (serial input data; i.e. D1), and SOD (serial output data; i.e. D2), are used. If US2066 is used with other chips, chip select port (CS\#) can be used. By setting CS\# to "Low", US2066 can receive SCLK input. If CS\# is set to "High", US2066 resets the internal transfer counter.

Before transfer real data, start byte has to be transferred. It is composed of succeeding five "High" bits, read write control bit (R/W), register selection bit (DC) and end bit that indicates the end of start byte. Whenever succeeding five "High" bits are detected by US2066, it makes serial transfer counter reset and ready to receive next information.

The next input data are register selection bit that determine which register will be used, and read write control bit that determine the direction of data. Then end bit is transferred, which must have "Low" value to show the end of start byte. (Refer to Figure 5-5 and Figure 5-6).

### 5.1.3.1 Write Operation $(R / W=0)$

After start byte is transferred from MPU to US2066, 8-bit data is transferred which is divided into 2 bytes, each byte has four bit's real data and four bit's partition token data. For example, if real data is "10110001" (D0 - D7), then serially transferred data becomes "10110000 00010000 " where the $2^{\text {nd }}$ and the $4^{\text {th }}$ four bits must be " 0000 " for safe transfer. To transfer several bytes continuously without changing D/C bit and R/W bit, start byte transfer is needed only at first starting time. Namely, after first start byte is transferred, real data can be transferred succeeding.

### 5.1.3.2 Read Operation $(R / W=1)$

After start byte is transferred to US2066, MPU can receive 8-bit data through the SOD port at a time from the LSB. Wait time is needed to insert between start byte and data reading, because internal reading from RAM requires some delay. Continuous data reading is possible like serial write operation. It also needs only one start byte, only if some delay between reading operations of each byte is inserted. During the reading operation, US2066 observes succeeding five "High" from MPU. If it is detected, US2066 restarts serial operation at once and ready to receive DC bit. So in continuous reading operation, SID port must be "Low".

Figure 5-5: Timing Diagram of Serial Data Transfer


SID (Input)


SOD (Output)


Figure 5-6: Timing Diagram of Continuous Data Transfer
Continuous Write Operation

### 5.1.4 MCU I ${ }^{2}$ C Interface

The $I^{2} C$ communication interface consists of slave address bit SAO, $\mathrm{I}^{2} \mathrm{C}$-bus data signal SDA (SDA ${ }_{\circ u t} / \mathrm{D}_{2}$ for output and $\mathrm{SDA}_{\mathrm{IN}} / \mathrm{D}_{1}$ for input) and $\mathrm{I}^{2} \mathrm{C}$-bus clock signal $\mathrm{SCL}\left(\mathrm{D}_{0}\right)$. Both the data and clock signals must be connected to pull-up resistors. RES\# is used for the initialization of device.
a) Slave address bit (SAO)

US2066 has to recognize the slave address before transmitting or receiving any information by the $\mathrm{I}^{2} \mathrm{C}$-bus. The device will respond to the slave address following by the slave address bit ("SAO" bit) and the read/write select bit ("R/W\#" bit) with the following byte format,
$b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} \quad b_{0}$
01111110 SAOR/W\#
"SAO" bit provides an extension bit for the slave address. Either " 0111100 " or " 0111101 " can be selected as the slave address of US2066. D/C\# pin acts as SAO for slave address selection.
" $\mathrm{R} / \mathrm{W} \#$ " bit is used to determine the operation mode of the $\mathrm{I}^{2} \mathrm{C}$-bus interface. $\mathrm{R} / \mathrm{W} \#=1$, it is in read mode. $\mathrm{R} / \mathrm{W} \#=0$, it is in write mode.
b) $\mathrm{I}^{2} \mathrm{C}$-bus data signal (SDA)

SDA acts as a communication channel between the transmitter and the receiver. The data and the acknowledgement are sent through the SDA.

It should be noticed that the $\Pi О$ track resistance and the pulled-up resistance at "SDA" pin becomes a voltage potential divider. As a result, the acknowledgement would not be possible to attain a valid logic 0 level in "SDA".
"SDA ${ }_{\text {IN }}$ and "SDA ${ }_{\text {Out" }}$ are tied together and serve as SDA. The "SDA ${ }_{\text {IN }}$ " pin must be connected to act as SDA. The "SDA $I^{2} \mathrm{C}$-bus.
c) $\mathrm{I}^{2} \mathrm{C}$-bus clock signal (SCL)

The transmission of information in the $I^{2} \mathrm{C}$-bus is following a clock signal, SCL . Each transmission of data bit is taken place during a single clock period of SCL.

### 5.1.4.1 $\quad I^{2} C$-bus Write data

The $\mathrm{I}^{2} \mathrm{C}$-bus interface gives access to write data and command into the device. Please refer to Figure 5-7 for the write mode of $\mathrm{I}^{2} \mathrm{C}$ bus in chronological order.

Figure 5-7 : $\mathrm{I}^{2} \mathrm{C}$-bus data format


### 5.1.4.2 Write mode for I2C

1) The master device initiates the data communication by a start condition. The definition of the start condition is shown in Figure 5-8. The start condition is established by pulling the SDA from HIGH to LOW while the SCL stays HIGH.
2) The slave address is following the start condition for recognition use. For the US2066, the slave address is either "b0111100" or "b0111101" by changing the SA0 to LOW or HIGH (D/C pin acts as SA0).
3) The write mode is established by setting the $\mathrm{R} / \mathrm{W} \#$ bit to logic " 0 ".
4) An acknowledgement signal will be generated after receiving one byte of data, including the slave address and the R/W\# bit. Please refer to the Figure 5-9 for the graphical representation of the acknowledge signal. The acknowledge bit is defined as the SDA line is pulled down during the HIGH period of the acknowledgement related clock pulse.
5) After the transmission of the slave address, either the control byte or the data byte may be sent across the SDA. A control byte mainly consists of Co and $\mathrm{D} / \mathrm{C}$ \# bits following by six " 0 "'s.
a. If the Co bit is set as logic " 0 ", the transmission of the following information will contain data bytes only.
b. The $\mathrm{D} / \mathrm{C} \#$ bit determines the next data byte is acted as a command or a data. If the $\mathrm{D} / \mathrm{C} \#$ bit is set to logic " 0 ", it defines the following data byte as a command. If the D/C\# bit is set to logic " 1 ", it defines the following data byte as a data which will be stored at the DDRAM. The DDRAM address counter will be increased by one automatically after each data write.
6) Acknowledge bit will be generated after receiving each control byte or data byte.
7) The write mode will be finished when a stop condition is applied. The stop condition is also defined in Figure 5-8. The stop condition is established by pulling the "SDA in" from LOW to HIGH while the "SCL" stays HIGH.

Figure 5-8 : Definition of the Start and Stop Condition


Figure 5-9 : Definition of the acknowledgement condition


Please be noted that the transmission of the data bit has some limitations.

1. The data bit, which is transmitted during each SCL pulse, must keep at a stable state within the "HIGH" period of the clock pulse. Please refer to the Figure 5-10 for graphical representations. Except in start or stop conditions, the data line can be switched only when the SCL is LOW.
.
2. Both the data line (SDA) and the clock line (SCL) should be pulled up by external resistors.

Figure 5-10 : Definition of the data transfer condition
SCL

### 5.2 Command Decoder

This module determines whether the input data is interpreted as data or command. Data is interpreted based upon the input of the D/C\# pin.

If $\mathrm{D} / \mathrm{C} \#$ pin is HIGH, $\mathrm{D}[7: 0$ ] is interpreted as display data written to Character Generator RAM (CGRAM) or Display Data RAM (DDRAM). If it is LOW, the input at $\mathrm{D}[7: 0]$ is interpreted as a command. Then data input will be decoded and written to the corresponding command register.

### 5.3 Oscillator Circuit and Display Time Generator

Figure 5-11 : Oscillator Circuit and Display Time Generator


This module is an on-chip LOW power RC oscillator circuitry. The operation clock (CLK) can be generated either from internal oscillator or external source CL pin. This selection is done by CLS pin. If CLS pin is pulled HIGH, internal oscillator is chosen and CL should be connected to $\mathrm{V}_{\text {ss }}$. Pulling CLS pin LOW disables internal oscillator and external clock must be connected to CL pins for proper operation. When the internal oscillator is selected, its output frequency Fosc can be changed by command D5h A[7:4].

The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor "D" can be programmed from 1 to 16 by command D5h

$$
\text { DCLK }=\mathrm{F}_{\mathrm{OSC}} / \mathrm{D}
$$

The frame frequency of display is determined by the following formula.

$$
F_{\text {FRM }}=\frac{F_{\text {osc }}}{D \times K \times 1 / \text { Duty Ratio }}
$$

, where

- D stands for clock divide ratio. It is set by command D5h A[3:0]. The divide ratio has the range from 1 to 16 .
- K is the number of display clocks per row. The value is derived by
$K=$ Phase 1 period + Phase 2 period $+K_{0}$
$=18+7+126=151$ at power on reset (that is $\mathrm{K}_{0}$ is a constant that equals to 126)
(Please refer to Section 5.5 "Segment Drivers / Common Drivers" for the details of the "Phase")
- Duty Ratio depends on display line number and segment-icon mode status. Refer to Table 2-1 for details.
- Fosc is the oscillator frequency. It can be changed by OLED command D5h A[7:4]. The higher the register setting results in higher frequency.


### 5.4 FR Synchronization

FR synchronization signal can be used to prevent tearing effect.


The starting time to write a new image to OLED driver is depended on the MCU writing speed. If MCU can finish writing a frame image within one frame period, it is classified as fast write MCU. For MCU needs longer writing time to complete (more than one frame but within two frames), it is a slow write one.

For fast write MCU: MCU should start to write new frame of ram data just after rising edge of FR pulse and should be finished well before the rising edge of the next FR pulse.

For slow write MCU: MCU should start to write new frame ram data after the falling edge of the $1^{\text {st }}$ FR pulse and must be finished before the rising edge of the $3^{\text {rd }}$ FR pulse.

### 5.5 Segment Drivers / Common Drivers

Segment drivers deliver 100 current sources to drive the OLED panel. The driving current can be adjusted from 0 to 450uA with 256 steps. Common drivers generate voltage-scanning pulses.

The segment driving waveform is divided into three phases:

1. In phase 1, the OLED pixel charges of previous image are discharged in order to prepare for next image content display.
2. In phase 2, the OLED pixel is driven to the targeted voltage. The pixel is driven to attain the corresponding voltage level from $V_{S S}$. The period of phase 2 can be programmed in length from 1 to 15 DCLKs. If the capacitance value of the pixel of OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage.
3. In phase 3, the OLED driver switches to use current source to drive the OLED pixels and this is the current drive stage.
$-1$

Figure 5-12 : Segment Output Waveform in three phases


After finishing phase 3, the driver IC will go back to phase 1 to display the next row image data. This three-step cycle is run continuously to refresh image display on OLED panel.

### 5.6 SEG/COM Driving Block

This block is used to derive the incoming power sources into the different levels of internal use voltage and current.

- $\quad \mathrm{V}_{\mathrm{CC}}$ is the most positive voltage supply.
- $\mathrm{V}_{\text {COMн }}$ is the Common deselected level. It is internally regulated.
- $\quad \mathrm{V}_{\text {LSS }}$ is the ground path of the analog and panel current.
- $\quad I_{\text {REF }}$ is a reference current source for segment current drivers $I_{\text {SEG }}$. The relationship between reference current and segment current of a color is:
$\mathrm{I}_{\mathrm{SEG}}=($ Contrast +1$) / 8 \times \mathrm{I}_{\text {REF }}$
in which the contrast (0~255) is set by OLED command "Set Contrast" 81h
The magnitude of $I_{\text {REF }}$ is controlled by the value of resistor, which is connected between $I_{\text {REF }}$ pin and $V_{S S}$ as shown in Figure 5-13. It is recommended to set $\mathrm{I}_{\mathrm{REF}}$ to $15 \pm 2 \mathrm{uA}$ so as to achieve $\mathrm{I}_{\mathrm{SEG}}=450 \mathrm{uA}$ at maximum contrast 255.

Figure 5-13 : $\mathrm{I}_{\text {Ref }}$ Current Setting by Resistor Value


Since the voltage at $\mathrm{I}_{\text {REF }} \mathrm{p}$ in is $\mathrm{V}_{\mathrm{CC}}-4.5 \mathrm{~V}$, the value of resistor R 1 can be found as below:

$$
\begin{aligned}
& \text { For } \mathrm{I}_{\text {REF }}=15 \mathrm{uA}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}: \\
& \begin{aligned}
\mathrm{R} 1 & =\left(\text { Voltage at } \mathrm{I}_{\mathrm{REF}}-\mathrm{V}_{\mathrm{SS}}\right) / \mathrm{I}_{\mathrm{REF}} \\
& =(15-4.5) / 15 \mathrm{uA} \\
& =700 \mathrm{k} \Omega
\end{aligned}
\end{aligned}
$$

### 5.7 Power ON and OFF Sequence

The following figures illustrate the recommended power ON and power OFF sequence of US2066:

## When LV I/O mode is chosen:

.

## Power ON sequence

1. Power $O N V_{D D I O}, V_{D D}$
2. After $\mathrm{V}_{\text {DDiO }}, \mathrm{V}_{D D}$ become stable, set RES\# pin LOW (logic low) for at least $3 \mathrm{us}\left(\mathrm{t}_{1}\right)^{(4)}$ and then HIGH (logic high).
3. After set RES\# pin LOW (logic low), wait for at least 100 us ( $\mathrm{t}_{2}$ ). Then Power ON $\mathrm{V}_{\mathrm{cc}}{ }^{(1)}$
4. After $\mathrm{V}_{\mathrm{Cc}}$ become stable, send fundamental command 0 Ch (for $\mathrm{RE}=0 \mathrm{~b}, \mathrm{SD}=0 \mathrm{~b}$ ) for display ON . $\mathrm{SEG} / \mathrm{COM}$ will be ON after $100 \mathrm{~ms}\left(\mathrm{t}_{\mathrm{AF}}\right)$.

Figure 5-14 : The Power ON sequence.


## Power OFF sequence:

1. Send fundamental command 08 h (for $\mathrm{RE}=0 \mathrm{~b}, \mathrm{SD}=0 \mathrm{~b}$ ) for display OFF .
2. Power OFF $\mathrm{V}_{\mathrm{CC}}{ }^{(1),(2),(3)}$
3. Power OFF $V_{\text {DDIO }}, V_{D D}$ after $t_{\text {OFF. }}{ }^{(5)}$ (where Minimum $t_{\text {OFF }}=0 \mathrm{~ms}{ }^{(5)}$, Typical $t_{\text {OFF }}=100 \mathrm{~ms}$ )

Figure 5-15 : The Power OFF sequence


## Note:

${ }^{(1)}$ Since an ESD protection circuit is connected between $V_{D D I O}, V_{D D}$ and $V_{C C}, V_{C C}$ becomes lower than $V_{D D I O}, V_{D D}$ whenever $V_{D D I O}, V_{D D}$ is ON and $\mathrm{V}_{\mathrm{CC}}$ is OFF as shown in the dotted line of $\mathrm{V}_{\mathrm{CC}}$ in Figure 5-14 and Figure 5-15.
${ }^{(2)} V_{\text {CC }}$ should be kept float (i.e. disable) when it is OFF.
${ }^{(3)}$ Power Pins $\left(\mathrm{V}_{\mathrm{DDIO}}, \mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC}}\right)$ can never be pulled to ground under any circumstance.
${ }^{(4)}$ The register values are reset after $\mathrm{t}_{1}$.
${ }^{(5)} \mathrm{V}_{\text {DDIO }}, \mathrm{V}_{\mathrm{DD}}$ should not be Power OFF before $\mathrm{V}_{\mathrm{CC}}$ Power OFF.

When 5V I/O mode is chosen:
Power ON sequence:

1. Power ON V DDio
2. After $\mathrm{V}_{\mathrm{DDIO}}$ becomes stable, set wait time at least $1 \mathrm{~ms}\left(\mathrm{t}_{0}\right)$ for internal $\mathrm{V}_{\mathrm{DD}}$ become stable. Then set RES\# pin LOW (logic low) for at least 3us ( $\mathrm{t}_{1}$ ) ${ }^{(4)}$ and then HIGH (logic high).
3. After set RES\# pin LOW (logic low), wait for at least $100 \mathrm{us}\left(\mathrm{t}_{2}\right)$. Then Power ON $\mathrm{V}_{\mathrm{Cc}}{ }^{(1)}$
4. After $\mathrm{V}_{\mathrm{cc}}$ become stable, send fundamental command 0 Ch (for $\mathrm{RE}=0 \mathrm{~b}, \mathrm{SD=Ob}$ ) for display ON . $\mathrm{SEG} / \mathrm{COM}$ will be ON after $200 \mathrm{~ms}\left(\mathrm{t}_{\mathrm{AF}}\right)$.

Figure 5-16 : The Power ON sequence.


## Power OFF sequence:

1. Send fundamental command 08 h (for $\mathrm{RE}=0 \mathrm{~b}, \mathrm{SD}=0 \mathrm{~b}$ ) for display OFF .
2. Power OFF $\mathrm{V}_{\mathrm{CC}}{ }^{(1),(2),(3)}$
3. Power OFF $\mathrm{V}_{\text {DDIO }}$ after $\mathrm{t}_{\text {OFF. }}{ }^{(5)}$ (where Minimum $\mathrm{t}_{\text {OFF }}=0 \mathrm{~ms}{ }^{(5)}$, Typical $\mathrm{t}_{\text {OFF }}=100 \mathrm{~ms}$ )

Figure 5-17 : The Power OFF sequence


## Note:

${ }^{(1)}$ Since an ESD protection circuit is connected between $V_{D D I O}, V_{D D}$ and $V_{C C}, V_{C C}$ becomes lower than $V_{D D I O}, V_{D D}$ whenever $V_{D D I O}, V_{D D}$ is ON and $\mathrm{V}_{\mathrm{cc}}$ is OFF as shown in the dotted line of $\mathrm{V}_{\mathrm{cc}}$ in Figure 5-16 and Figure 5-17.
${ }^{(2)} V_{C C}$ should be kept float (i.e. disable) when it is OFF.
${ }^{(3)}$ Power Pins ( $\mathrm{V}_{\mathrm{DDIO}}, \mathrm{V}_{\mathrm{DD}}$, and VCC ) can never be pulled to ground under any circumstance.
${ }^{(4)}$ The register values are reset after $t_{1}$.
${ }^{(5)} \mathrm{V}_{\mathrm{DDIO}}, \mathrm{V}_{\mathrm{DD}}$ should not be Power OFF before $\mathrm{V}_{\mathrm{CC}}$ Power OFF.

### 5.8 Busy Flag (BF)

When $\mathrm{BF}=$ "High", it indicates that the internal operation is being processed. So during this time the next instruction cannot be accepted. BF can be read, when D/C\# = Low and R/W\# (WR\#) = High (Read Instruction Operation), through D7. Before executing the next instruction, be sure that BF is not high.

### 5.9 Address Counter (AC)

Address Counter (AC) stores DDRAM and CGRAM address, transferred from Command Decoder After writing into (reading from) DDRAM and CGRAM, AC is automatically increased (decreased) by 1 . In parallel and serial mode, when D/C\# = "Low" and R/W\# (WR\#) = "High", AC can be read through D[6:0].

### 5.10 Cursor/Blink Control Circuit

It controls cursor/blink ON/OFF and black/white inversion at cursor position.

### 5.11 Display Data Ram (DDRAM)

DDRAM stores display data of maximum $80 \times 8$ bits ( 80 characters). DDRAM address is set in the address counter (AC) as a hexadecimal number. (Refer to Figure 5-18)

Figure 5-18: DDRAM Address
MSB

| AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## Display of 5-Dot Font Width Character

## 5-dot 1-line Display

In case of 1 -line display with 5 -dot font, the address range of DDRAM is 00H-4FH (Refer to Figure 5-19)
Figure 5-19: 1-line x 20ch. Display (5-dot Font Width)


5-dot 2-line Display
In case of 2-line display with 5 -dot font, the address range of DDRAM is $00 \mathrm{H}-27 \mathrm{H}, 40 \mathrm{H}-67 \mathrm{H}$ (refer to Figure $5-20$ ).
Figure 5-20: 2-line x 20ch. Display (5-dot Font Width)


## 5-dot 3-line Display

In case of 3 -line display with 5 -dot font, the address range of DDARM is $00 \mathrm{H}-13 \mathrm{H}, 20 \mathrm{H}-33 \mathrm{H}, 40 \mathrm{H}-53 \mathrm{H}$ (refer to Figure $5-21$ ).
Figure 5-21: 3-line x 20ch. Display (5-dot Font Width)

(After Shift Left)

(After Shift Right)

## 5-dot 4-line Display

In case of 4 -line display with 5 -dot font, the address range of DDARM is $00 \mathrm{H}-13 \mathrm{H}, 20 \mathrm{H}-33 \mathrm{H}, 40 \mathrm{H}-53 \mathrm{H}, 60 \mathrm{H}-73 \mathrm{H}$ (refer to

Figure 5-22).
Figure 5-22: 4-line x 20ch. Display (5-dot Font Width)


## DISPLAY OF 6-DOT FONT WIDTH CHARACTER

When the device is used in 6-dot font width mode, SEG96, SEG97, SEG98 and SEG99 must be opened.

## 6-dot 1-line Display

In case of 1 -line display with 6 -dot font, the address range of DDRAM is $00 \mathrm{H}-4 \mathrm{FH}$ (refer to Figure 5-23).
Figure 5-23: 1-line x 16ch. Display (6-dot Font Width)


## 6-dot 2-line Display

In case of 2-line display with 6-dot font, the address range of DDRAM is $00 \mathrm{H}-27 \mathrm{H}, 40 \mathrm{H}-67 \mathrm{H}$ (refer to Figure $5-24$ ).
Figure 5-24: 2-line x 16ch. Display (6-dot Font Width)


## 6-dot 3-line Display

In case of 3 -line display with 6 -dot font, the address range of DDARM is $00 \mathrm{H}-13 \mathrm{H}, 20 \mathrm{H}-33 \mathrm{H}, 40 \mathrm{H}-53 \mathrm{H}$ (refer to Figure $5-25$ ).
Figure 5-25: 3-line x 16ch. Display (6-dot Font Width)


## 6-dot 4-line Display

In case of 4-line display with 6 -dot font, the address range of DDARM is $00 \mathrm{H}-13 \mathrm{H}, 20 \mathrm{H}-33 \mathrm{H}, 40 \mathrm{H}-53 \mathrm{H}, 60 \mathrm{H}-73 \mathrm{H}$ (refer to Figure 5-26).

Figure 5-26 : 4-line $\times$ 16ch. Display (6-dot Font Width)

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | - Display Position |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{\text { COMO }}{\text { COM7 }} 00$ | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | OA | OB | OC | OD | OE | 0F | DDRAM Address |
| $\frac{\text { COMB }}{\text { COM15 }} 20$ | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 2A | 2B | 2C | 2D | 2E | 2F |  |
| $\begin{aligned} & C O M 16 \\ & \text { COM } 23 \\ & \end{aligned}$ | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 4A | 4B | 4C | 4D | 4E | 4F |  |
| $\begin{aligned} & \text { COM } 241 \\ & \text { COM31 } 60 \\ & \text { SEGO } \end{aligned}$ | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 6A | 6B | 6C | 6D | 6E | $\begin{array}{\|c\|} \hline 6 \mathrm{FF} \\ \text { SEG95 } \end{array}$ |  |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| COM0 ${ }^{\text {COM }} 01$ | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | OA | OB | OC | OD | 0E | OF | 10 |
|  | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 2A | 2B | 2C | 2D | 2E | 2F | 30 |
| COM23 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 4A | 4B | 4C | 4D | 4E | 4F | 50 |
| COM31 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 6A | 6B | 6C | 6D | 6E | 6F | 70 |

(After Shift Left)

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A | 0B | 0C | 0D | OE |
| COM8 33 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 2A | 2B | 2C | 2D | 2E |
| OM16 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 4A | 4B | 4C | 4D | 4E |
| COM24 |  |  | , | 43 | 44 |  | 46 | 47 | 48 | 49 |  | 4B |  |  | 6E |
| COM31-73 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 6A | 6B | 6C | 6D | 6E |

(After Shift Right)

### 5.12 CGROM (Character Generator ROM)

There are 3 optional CGROM's in US2066 (details refer to Section 12), which is selected by ROM0 and ROM1 pins (by extension command 72h under appropriate H/W pin setting; refer to Table 4-5 and

Table 6-2 for details), while each CGROM has $5 \times 8$ dots 256 Character Pattern.

### 5.13 CGRAM (Character Generator RAM)

CGRAM has up to 8 characters of $5 \times 8$ dots, selectable by OPR0 and OPR1 pins (refer to Table 4-6).

Table 5-4: CGRAM and CGROM arrangement with
$($ OPR1, OPRO $)=(0,0)$

$($ OPR1, OPRO $)=(0,1)$

$($ OPR1, OPR0 $)=(1,0)$

$($ OPR1, OPRO $)=(1,1)$


By writing font data to CGRAM, user defined character can be used (refer to Table 5-5).

Table 5-5: Relationship between Character Code (DDRAM) and Character Pattern (CGRAM)
$5 \times 8$ dots Character Pattern

$6 \times 8$ Dots Character Pattern

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Character Code (DDRAM Data)} \& \multicolumn{6}{|c|}{CGRAM Address} \& \multicolumn{8}{|c|}{CGRAM Daata} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Pattern \\
Number
\end{tabular}} \\
\hline D7 \& D6 \& D5 \& D4 \& D3 \& D2 \& D1 \& D0 \& A 0 \& \& \& \multicolumn{3}{|l|}{A2 A1 A0} \& P7 \& P6 \& P5 \& P4 \& P3 \& P2 \& \multicolumn{2}{|l|}{P1 P0} \& \\
\hline 0 \& 0 \& 0 \& 0 \& X \& 0 \& 0 \& 0 \& 0 \& \[
0
\] \& \[
0
\] \& \[
\begin{aligned}
\& \hline 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 0 \\
\& 0 \\
\& 1 \\
\& 1 \\
\& 0 \\
\& 0 \\
\& 1 \\
\& 1 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 0 \\
\& 1 \\
\& 0 \\
\& 1 \\
\& 0 \\
\& 1 \\
\& 0 \\
\& 1 \\
\& \hline
\end{aligned}
\] \& B1 \& B0 \& \[
\begin{aligned}
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 0 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& 0
\end{aligned}
\] \& 1
0
0
1
0
0
0
0 \& \[
\begin{aligned}
\& \hline 1 \\
\& 0 \\
\& 0 \\
\& 1 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& 0 \\
\& 0 \\
\& 1 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 0 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& 0
\end{aligned}
\] \& Pattern1 \\
\hline \& \& \& \& - \& \& \& \& \& . \& \& \& . \& \& \& \& \& \& \& \& \& \& \\
\hline 0 \& 0 \& 0 \& 0 \& x \& 1 \& 1 \& 1 \& 1 \& 1
. \& \[
\overline{1}
\] \& 0
0
0
0
1
1
1
1 \& 0
0
1
1
0
0
1
1 \& 0
1
0
1
0
1
0
1 \& B1 \& B0

.
$\cdot$
$\cdot$
$\cdot$
$\cdot$
$\cdot$ \& 0
0
0
0
0
0
0
0 \& 1
1
1
1
1
1
1
0 \& 0
0
0
1
0
0
0
0 \& 0
0
0
1
0
0
0
0 \& 0
0
0
1
0
0
0
0 \& 1
1
1
1
1
1
1
0 \& Pattern8 <br>
\hline
\end{tabular}

## Notes:

${ }^{(1)}$ When BE (Blink Enable bit) = "High", blink is controlled by B1 and B0 bit.
In case of 5 -dot font width, when $B 1=" 1$ ", enabled dots of PO-P4 will blink, and when $B 1=" 0$ " and $B 0=" 1$ ", enabled dots of P 4 will blink, when $\mathrm{B} 1=" 0$ " and $\mathrm{BO}=" 0 "$, blink will not happen.
In case of 6 -dot font width, when $B 1=" 1$ ", enabled dots of P0-P5 will blink, and when $B 1=" 0$ " and $B 0=" 1$ ", enabled dots of P5 will blink, when $\mathrm{B} 1=" 0$ " and $\mathrm{B} 0=" 0$ ", blink will not happen.
(2) "X": Don't care

### 5.14 5V I/O regulator

US2066 accepts two low voltage power supply ranges:

- 2.4-3.6V [Low Voltage I/O Application] and
- 4.4-5.5V [5V I/O Application]

5 V IO Regulator is enabled to regulate internal $\mathrm{V}_{\mathrm{DD}}$ for power supply of internal circuit blocks (core logic operation).

Table 5-6 summarizes the input / output connection of 5V IO regulator in normal application.
Table 5-6: 5V IO regulator pin description

| Pin Name | Low Voltage I/O Application | 5V I/O Application |
| :--- | :--- | :--- |
| REGVDD | LOW, disable 5V I/O regulator | HIGH, enable 5V I/O regulator |
| $V_{D D}$ | $2.4-V_{\text {DDIO }}$ | NC with stabilizing capacitor <br> It is internally regulated |
| $V_{D D I O}$ | $2.4 \mathrm{~V}-3.6 \mathrm{~V}$ | $4.4 \mathrm{~V}-5.5 \mathrm{~V}$ |

## 6 Command Table

There are three sets of command set in US2066: Fundamental Command Set, Extended Command Set and OLED Command Set. These three command sets can be selected by setting logic bits IS, RE and SD accordingly.

Table 6-1: Fundamental Command Table

| 1. Fundamental Command Set |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Command | IS | RE | SD | Instruction Code |  |  |  |  |  |  |  |  |  | Description |
|  |  |  |  | D/C\# | $\begin{array}{\|l\|} \hline \text { R/W\# } \\ \text { (WR\#) } \end{array}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |  |
| Clear Display | X | $\mathbf{X}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Write " 20 H " to DDRAM and set DDRAM address to " 00 H " from AC. |
| Return Home | X | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | * | Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed. |
| Entry Mode Set | X | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | I/D | S | Assign cursor / blink moving direction with DDRAM address. <br> I/D = "1": cursor/ blink moves to right and DDRAM address is increased by 1 (POR) <br> I/D = "0": cursor/ blink moves to left and DDRAM address is decreased by 1 <br> Assign display shift with DDRAM address. <br> S = "1": make display shift of the enabled lines by the DS4 to DS1 bits in the shift enable instruction. Left/ right direction depends on I/D bit selection. <br> S = "0": display shift disable (POR) |
|  | X | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | BDC | BDS | Common bi-direction function. $\begin{aligned} & \text { BDC = "0": COM31 -> COMO } \\ & \text { BDC = "1": COM0 -> COM31 } \end{aligned}$ <br> Segment bi-direction function. $\begin{aligned} & \text { BDS = "0": SEG99 -> SEG0, } \\ & \text { BDS = "1": SEG0 -> SEG99 } \end{aligned}$ |
| Display ON / OFF Control | X | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | D | C | B | $\begin{aligned} & \text { Set display/cursor/blink ON/OFF } \\ & \text { D = "1": display ON, } \\ & \text { D = "0": display OFF (POR), } \\ & C=\text { "1": cursor ON, } \\ & C=\text { "0": cursor OFF (POR), } \\ & B=\text { "1": blink ON, } \\ & B=\text { "0": blink OFF (POR). } \end{aligned}$ |
| Extended Function Set | X | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | FW | B/W | NW | Assign font width, black/white inverting of cursor, and 4-line display mode control bit. <br> FW = "1": 6-dot font width, FW = "0": 5-dot font width (POR), <br> B/W = "1": black/white inverting of cursor enable, <br> $\mathrm{B} / \mathrm{W}=$ = "0": black/white inverting of cursor |


| 1. Fundamental Command Set |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Command | IS | RE | SD | Instruction Code |  |  |  |  |  |  |  |  |  | Description |
|  |  |  |  | D/C\# | $\begin{array}{\|l\|} \hline \text { R/W\# } \\ \text { (WR\#) } \end{array}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | disable (POR) <br> NW = "1": 3-line or 4-line display mode <br> NW = "0": 1-line or 2-line display mode |
| Cursor or Display Shift | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | S/C | R/L | * | * | Set cursor moving and display shift control bit, and the direction, without changing DDRAM data. $\begin{aligned} & S / C=\text { "1": display shift, } \\ & \text { S/C = "0": cursor shift, } \\ & \text { R/L = "1": shift to right, } \\ & R / L=\text { "0": shift to left } \end{aligned}$ |
| Double Height (4line) / Display-dot shift | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | UD2 | UD1 | * | DH' | UD2~1: Assign different doubt height format (POR=11b) <br> Refer to Table 7-2 for details <br> DH' = "1": display shift enable <br> DH' = "0": dot scroll enable (POR) |
| Shift Enable | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | DS4 | DS3 | DS2 | DS1 | DS[4:1]=1111b (POR) when DH' $=1 \mathrm{~b}$ <br> Determine the line for display shift. <br> DS1 = " $1 / 0^{0}$ : $1^{\text {st }}$ line display shift enable/disable <br> DS2 = " $1 / 0$ ": $2^{\text {nd }}$ line display shift enable/disable <br> DS3 = " $1 / 0$ ": $3^{\text {rd }}$ line display shift enable/disable <br> DS4 $=$ " $1 / 0^{\text {" }}: 4^{\text {th }}$ line display shift enable/disable. |
| Scroll Enable | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | HS4 | HS3 | HS2 | HS1 | ```HS[4:1]=1111b (POR) when \(\mathrm{DH}^{\prime}=0 \mathrm{~b}\) Determine the line for horizontal smooth scroll. HS1 = "1/0": \(1^{\text {st }}\) line dot scroll enable/disable HS2 = " \(1 / 0\) ": \(2^{\text {nd }}\) line dot scroll enable/disable HS3 = " \(1 / 0^{0}\) : \(3^{\text {rd }}\) line dot scroll enable/disable HS4 = " \(1 / 0^{\text {" }}: 4^{\text {th }}\) line dot scroll enable/disable.``` |
| Function Set | X | 0 | 0 | 0 | 0 | 0 | 0 | 1 | * | N | DH | $\begin{aligned} & \text { RE } \\ & \text { (0) } \end{aligned}$ | IS | Numbers of display line, N when N = "1": <br> 2-line ( $N W=0 b$ ) / 4-line ( $N W=1 b$ ), <br> when $\mathrm{N}=$ " 0 ": <br> 1-line $(N W=0 b) / 3$-line $(N W=1 b)$ <br> DH = " $1 / 0$ ": Double height font control for 2-line mode enable/ disable (POR=0) <br> Extension register, RE ("0") <br> Extension register, IS |


| 1. Fundamental Command Set |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Command | IS | RE | SD | Instruction Code |  |  |  |  |  |  |  |  |  | Description |
|  |  |  |  | D/C\# | $\begin{aligned} & \text { R/W\# } \\ & \text { (WR\#) } \end{aligned}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |  |
|  | X | 1 | 0 | 0 | 0 | 0 | 0 | 1 | * | N | BE | RE <br> (1) | REV | ```CGRAM blink enable BE = 1b: CGRAM blink enable BE = Ob: CGRAM blink disable (POR) Extension register, RE ("1") Reverse bit REV = "1": reverse display, REV = "0": normal display (POR)``` |
| Set CGRAM address | 0 | 0 | 0 | 0 | 0 | 0 | 1 | AC5 | AC4 | AC3 | AC2 | AC1 | ACO | Set CGRAM address in address counter. (POR=00 0000) |
| Set DDRAM Address | X | 0 | 0 | 0 | 0 | 1 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | ACO | Set DDRAM address in address counter. (POR=000 0000) |
| Set Scroll Quantity | X | 1 | 0 | 0 | 0 | 1 | * | SQ5 | SQ4 | SQ3 | SQ2 | SQ1 | SQ0 | Set the quantity of horizontal dot scroll. $(P O R=000000)$ <br> Valid up to SQ[5:0] = 110000b |
| Read Busy <br> Flag and <br> Address/ <br> Part ID | X | X | 0 | 0 | 1 | BF | $\begin{gathered} \text { AC6 } \\ \text { ID6 } \end{gathered}$ | $\begin{gathered} \text { AC5 } \\ \text { ID5 } \end{gathered}$ | $\begin{gathered} \text { AC4 } \\ \text { I } 4 \end{gathered}$ | $\begin{gathered} \text { AC3 } \\ \text { I } \\ \text { ID3 } \end{gathered}$ | $\begin{gathered} \text { AC2 } \\ \text { I } 2 \end{gathered}$ | $\begin{gathered} \text { AC1 } \\ \text { ID1 } \end{gathered}$ | $\begin{gathered} \text { ACO } \\ \text { I } \\ \text { IDO } \end{gathered}$ | Can be known whether during internal operation or not by reading BF . The contents of address counter or the part ID can also be read. When it is read the first time, the address counter can be read. When it is read the second time, the part ID can be read. <br> BF = "1": busy state <br> BF = "0": ready state |
| Write data | X | X | 0 | 1 | 0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Write data into internal RAM (DDRAM / CGRAM). |
| Read data | X | X | 0 | 1 | 1 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Read data from internal RAM (DDRAM / CGRAM). |

## Notes

${ }^{(1)}$ POR stands for Power on Reset Values.
(2) "*" and "X" stand for "Don't care".

Table 6-2: Extended Command Table

| 2. Extended Co | mm | mand | Se |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Command | IS |  | SD | Instruction Code |  |  |  |  |  |  |  |  |  |  | Description |  |  |
|  |  |  |  | D/C\# | R/W\# (WR\#) |  | D7 | D6 | D5 |  | D3 | D2 | D1 | D0 |  |  |  |
| Function Selection A | $\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \end{aligned}$ | $\begin{aligned} & \mathbf{1} \\ & \mathbf{1} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{gathered} 71 \\ A[7: 0] \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{~A}_{7} \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{~A}_{6} \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{~A}_{5} \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{~A}_{4} \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{~A}_{3} \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{~A}_{2} \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{~A}_{1} \end{gathered}$ |  | $A[7: 0]=00 h$, Disable internal $V_{D D}$ regulator at 5V I/O application mode <br> A[7:0] = 5Ch, Enable internal $\mathrm{V}_{\mathrm{DD}}$ regulator at 5V I/O application mode (POR) |  |  |
| Function Selection B | $\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | 0 | 01 | [ 0 | 72 | $\begin{aligned} & \hline 0 \\ & * \end{aligned}$ | $\begin{aligned} & \hline 1 \\ & * \end{aligned}$ | $\begin{aligned} & \hline 1 \\ & * \end{aligned}$ |  | $\begin{array}{\|c} \hline 0 \\ \text { ROM } \\ 1 \end{array}$ | 0 <br> ROM <br> 0 | 1 <br> OPR <br> 1 | $\begin{array}{\|c\|} \hline 0 \\ \text { OPR } \\ 0 \\ \hline \end{array}$ | OPR[1:0]: Select the character no. of character generator |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | OPR[1: | CGROM | CGRAM |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 00b | 240 | 8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 01b | 248 | 8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 10b | 250 | 6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 11b | 256 | 0 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ROM[1:0]: S | ect chara | er ROM |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | RO[ |  | ROM |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 00 |  | A |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 01 |  | B |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 10 |  | C |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 11 |  | valid |
| OLED <br> Characterization | X | 1 | X | 0 | 0 | $78 / 79$ | 0 | 1 | 1 | 1 | 1 | 0 | 0 | SD | Extension reg SD = Ob: OLED disabled (POR) SD = 1b: OLE enabled Details refer | ster, SD comman <br> comman <br> Table 6-3 | set is <br> set is |

## Notes

${ }^{(1)}$ POR stands for Power on Reset Values.
(2) "*" and " $X$ " stand for "Don't care".

Table 6-3: OLED Command Table

| 3. OLED Command Set |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Command |  |  |  | Instruction Code |  |  |  |  |  |  |  |  |  |  | Description |
|  |  |  |  | D/C\# | $\begin{aligned} & \text { R/W\# } \\ & \text { (WR\#) } \end{aligned}$ | Hex | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |  |
| Set Contrast Control | $\begin{array}{\|l\|l} \mathbf{X} \\ \mathbf{X} \end{array}$ | $\begin{array}{\|l\|} \hline \mathbf{1} \\ \mathbf{1} \end{array}$ | $\begin{array}{\|l\|} \hline \mathbf{1} \\ \mathbf{1} \\ \hline \end{array}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{gathered} 81 \\ A[7: 0] \end{gathered}$ | $\begin{gathered} 1 \\ A_{7} \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{~A}_{6} \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{~A}_{5} \end{gathered}$ | $\begin{gathered} \hline 0 \\ \mathrm{~A}_{4} \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{~A}_{3} \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{~A}_{2} \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{~A}_{1} \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{~A}_{0} \end{gathered}$ | Double byte command to select 1 out of 256 contrast steps. Contrast increases as the value increases. $(\mathrm{POR}=7 \mathrm{Fh})$ |
| Set Display Clock Divide Ratio/Oscillator Frequency | $\begin{array}{\|l\|} \hline \mathbf{X} \\ \mathbf{X} \end{array}$ | $\begin{array}{\|l\|} \hline \mathbf{1} \\ \mathbf{1} \end{array}$ | $\begin{array}{\|l\|} \hline \mathbf{1} \\ \mathbf{1} \end{array}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { D5 } \\ A[7: 0] \end{array}$ | $\begin{gathered} 1 \\ \mathrm{~A}_{7} \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{~A}_{6} \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{~A}_{5} \end{gathered}$ | $\begin{gathered} \hline 1 \\ \mathrm{~A}_{4} \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{~A}_{3} \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{~A}_{2} \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{~A}_{1} \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{~A}_{0} \end{gathered}$ | $\begin{aligned} & \text { A[3:0]: } \begin{array}{l} \text { Define the divide ratio (D) of } \\ \\ \\ \text { the display clocks (DCLK): } \\ \\ \\ \\ \\ \text { divide ratio }=A[3: 0]+1 \end{array} \\ & A[7: 4]: \\ & \text { Set the Oscillator Frequency, } \\ & \text { Fosc. Oscillator Frequency } \\ & \text { increases with the value of } \\ & A[7: 4] \text { and vice versa. } \\ & \text { (POR=0111b) } \\ & \text { Range:0000b } \sim 1111 \mathrm{~b} \\ & \text { Frequency increases as setting value } \\ & \text { increases. } \end{aligned}$ |
| Set Phase Length | $\begin{array}{\|l\|} \hline \mathbf{X} \\ \mathbf{X} \end{array}$ | $\begin{array}{\|l\|} \hline \mathbf{1} \\ \mathbf{1} \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \mathbf{1} \\ \hline \end{array}$ | $\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{array}{\|c\|} \hline D 9 \\ A[7: 0] \end{array}$ | $\begin{gathered} \hline 1 \\ \mathrm{~A}_{7} \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{~A}_{6} \end{gathered}$ | $\begin{gathered} \hline 0 \\ \mathrm{~A}_{5} \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{~A}_{4} \end{gathered}$ | $\begin{gathered} \hline 1 \\ \mathrm{~A}_{3} \end{gathered}$ | $\begin{gathered} \hline 0 \\ \mathrm{~A}_{2} \end{gathered}$ | $\begin{gathered} \hline 0 \\ \mathrm{~A}_{1} \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{~A}_{0} \end{gathered}$ | A[3:0]: Phase 1 period of up to 32 DCLK; clock 0 is an valid entry with 2 DCLK (POR=1000b) <br> A[7:4]: Phase 2 period of up to 15 DCLK; clock 0 is invalid entry (POR=0111b) |
| Set SEG Pins Hardware Configuration | $\begin{array}{\|l\|} \hline \mathbf{X} \\ \mathbf{X} \end{array}$ | $\begin{array}{\|l\|} \hline \mathbf{1} \\ \mathbf{1} \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \mathbf{1} \\ \mathbf{1} \\ \hline \end{array}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { DA } \\ A[5: 4] \end{array}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | $\begin{gathered} \hline 0 \\ A_{5} \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{~A}_{4} \\ \hline \end{gathered}$ | $\begin{aligned} & \hline 1 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 1 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$ | A[4]=0b, Sequential SEG pin configuration <br> $A[4]=1 b$ (POR), Alternative (odd/even) SEG pin configuration <br> A[5]=0b (POR), Disable SEG Left/Right remap <br> $A[5]=1 b$, Enable SEG Left/Right remap <br> Refer to Table 6-4 for details |
| Set $\mathrm{V}_{\text {сомн }}$ Deselect Level | $\begin{array}{\|l\|} \mathbf{X} \\ \mathbf{X} \end{array}$ | $\begin{array}{\|l\|} \hline \mathbf{1} \\ \mathbf{1} \end{array}$ | $\begin{array}{\|l\|} \hline \mathbf{1} \\ \mathbf{1} \\ \hline \end{array}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{array}{\|c\|} \hline D B \\ A[6: 4] \end{array}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | $\begin{gathered} \hline 1 \\ \mathrm{~A}_{6} \end{gathered}$ | $\begin{gathered} \hline 0 \\ A_{5} \end{gathered}$ | $\begin{gathered} \hline 1 \\ \mathrm{~A}_{4} \end{gathered}$ | $\begin{aligned} & \hline 1 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 1 \\ & 0 \end{aligned}$ | A[6:4] Hex <br> code $V_{\text {сомн }}$ deselect level <br> 000b 00 h $\sim 0.65 \times \mathrm{V}_{\mathrm{Cc}}$ <br> 001b 10 h $\sim 0.71 \times \mathrm{V}_{\mathrm{CC}}$ <br> 010b 20 h $\sim 0.77 \times \mathrm{V}_{\mathrm{CC}}(\mathrm{POR})$ <br> 011 b 30 h $\sim 0.83 \times \mathrm{V}_{\mathrm{CC}}$ <br> 100 b 40 h $1 \times \mathrm{V}_{\mathrm{Cc}}$ |



## Note

${ }^{(1)}$ POR stands for Power on Reset Values.
(2) "*" and " $X$ " stand for "Don't care".
${ }^{(3)}$ The locked OLED driver IC MCU interface prohibits all commands access except logic bit SD is set to 1 b .
${ }^{(4)}$ Refer to Table 6-1 and

Table 6-2 for the details of logic bits IS, RE and SD.

Table 6-4 : SEG Pins Hardware Configuration
SEG Odd / Even (Left / Right) and Top / Bottom connections are software selectable, thus there are total of 8 cases and they are shown on the followings:

| Case no. | Oddeven (1) / Sequential (0) <br> OLED Command : <br> DAh -> A[4] | SEG Remap (Fundamental) <br> Command Control bit: BDS; <br> or by H/W setting: SHLS | Left / Right Swap <br> OLED Command : <br> DAh -> A[5] | Remark |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 0 |  |
| 2 | 0 | 1 | 1 |  |
| 3 | 0 | 0 | 0 |  |
| 4 | 0 | 0 | 1 |  |
| 5 | 1 | 1 | 0 | Default |
| 6 | 1 | 1 | 1 |  |
| 7 | 1 | 0 | 0 |  |
| 8 | 1 | 0 | 1 |  |




## Note:

${ }^{(1)}$ The above eight figures are all with bump pads being faced up.

## 7 Command Descriptions

### 7.1 Fundamental Command Set

### 7.1.1 Clear Display ( $I S=X, R E=X, S D=0$ )

| D/C\# | R/W\# (WR\#) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

Clear all the display data by writing "20H" (space code) to all DDRAM address, and set DDRAM address to "00H" into AC (address counter). Return cursor to the original status, namely, bring the cursor to the left edge on first line of the display. Make entry mode increment (I/D = "1").

### 7.1.2 Return Home (IS=X, RE = 0, SD = 0)

| D/C\# | R/W\# (WR\#) | D7 | D6 | D5 | D3 | D2 | D1 | D0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | X |

Return Home is cursor return home instruction. Set DDRAM address to " 00 H " into the address counter. Return cursor to its original site and return display to its original status, if shifted. Contents of DDRAM do not change.

### 7.1.3 Entry Mode Set (IS=X, RE = or 1, SD = 0)

When RE = 0

| D/C\# | R/W\# (WR\#) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | I/D | S |

Set the moving direction of cursor and display.
I/D: Increment/decrement of DDRAM address (cursor or blink)
When I/D = "High", cursor/blink moves to right and DDRAM address is increased by 1.
When I/D = "Low", cursor/blink moves to left and DDRAM address is decreased by 1.

- CGRAM operates the same as DDRAM, when read from or write to CGRAM.

When $\mathrm{S}=$ "High", after DDRAM write, the display of enabled line by DS1 - DS4 bits in the command "Shift Enable" is shifted to the right ( $\mathrm{I} / \mathrm{D}=" 0$ ") or to the left ( $\mathrm{I} / \mathrm{D}=" 1$ "). But it will seem as if the cursor does not move. When $\mathrm{S}=$ "Low", or DDRAM read, or CGRAM read/write operation, shift of display like this function is not performed.

When RE = 1

| D/C\# | R/W\# (WR\#) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | BDC | BDS |

Set the data shift direction of segment in the application set.
BDS: Data shift direction of segment
When BDS = "Low", segment data shift direction is set to reverse from SEG99 to SEG0.
When BDS = "High", segment data shift direction is set to normal order from SEG0 to SEG99.
BDC: Data shift direction of common
When BDC = "Low", common data shift direction is set to reverse from COM31 to COMO.
When BDC = "High", common data shift direction is set to normal order from COM0 to COM31.
The BDC, BDS setting is recommended to be set at the same time as the command "Function set".

### 7.1.4 Display ON/OFF Control ( $\mathrm{IS}=\mathrm{X}, \mathrm{RE}=0, \mathrm{SD}=0$ )

| D/C\# | R/W\# (WR\#) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | D | C | B |

Control display/cursor/blink ON/OFF 1 bit register.
D: Display ON/OFF control bit
When D = "High", entire display is turned ON.
When $\mathrm{D}=$ "Low", display is turned OFF, but display data is remained in DDRAM.

C: Cursor ON/OFF control bit
When C = "High", cursor is turned ON.
When $\mathrm{C}=$ "Low", cursor is disappeared in current display, but I/D register remains its data.
B: Cursor Blink ON/OFF control bit
When $\mathrm{B}=$ "High", cursor blink is ON , that performs alternate between all the high data and display character at the cursor position.
When $\mathrm{B}=$ "Low", blink is OFF.

### 7.1.5 Extended Function Set ( $\mathrm{IS}=\mathrm{X}, \mathrm{RE}=\mathbf{1}, \mathrm{SD}=\mathbf{0}$ )

| D/C\# | R/W\# (WR\#) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | FW | B/W | NW |

FW: Font Width control
When FW = "High", display character font width is assigned to 6 -dot and execution time becomes $6 / 5$ times than that of 5 dot font width.
The user font, specified in CGRAM, is displayed into 6 -dot font width, bit-5 to bit-0, including the leftmost space bit of CGRAM. (refer to Figure 7-1)
When FW = "Low", 5 -dot font width is set.
B/W: Black/White Inversion enable bit
When $\mathrm{B} / \mathrm{W}=$ "High", black/white inversion at the cursor position is set. In this case $\mathrm{C} / \mathrm{B}$ bit in the command "Display ON/OFF Control" becomes don't care condition.
NW: 4 Line mode enable bit
When NW = "High", 3 or 4 line display mode is set. In this case, $N$ bit in the command "Function set" becomes don't care condition.
When NW = "Low", 1 or 2 line display mode is set. In this case, N bit in the command "Function set" becomes don't care condition.

Figure 7-1: 6-dot Font Width CGROM/CGRAM


### 7.1.6 Cursor or Display Shift $(I S=0, R E=0, S D=0)$

| D/C\# | R/W\# (WR\#) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 1 | S/C | R/L | X | X |

Shift right / left cursor position or display, without writing or reading of display data. This command is used to correct or search display data (refer to Table 7-1). During 2 -line mode display, cursor moves to the 2 nd line after $40^{\text {th }}$ digit of 1 st line. When 4 -line mode, cursor moves to the next line, only after every $20^{\text {th }}$ digit of the current line. Note that display shift is performed simultaneously in all the line enabled by DS1-DS4 in the command "Shift Enable". When displayed data is shifted repeatedly, each line shifted individually. When display shift is performed, the contents of address counter are not changed.

Table 7-1: Shift patterns According to S/C and R/L Bits

| $\mathbf{S} / \mathbf{C}$ | $\mathbf{R} / \mathbf{L}$ |  |
| :---: | :---: | :--- |
| 0 | 0 | Shift cursor to the left, address counter is decreased by 1. |
| 0 | 1 | Shift cursor to the right, address counter is increased by 1 |
| 1 | 0 | Shift all the display to the left, cursor moves according to the display. No change in address counter. |
| 1 | 1 | Shift all the display to the right, cursor moves according to the display. No change in address counter. |

### 7.1.7 Double Height (4-line) / Display-dot shift ( $\mathrm{IS}=\mathbf{0}, \mathrm{RE}=\mathbf{1}, \mathrm{SD}=0$ )

| D/C\# | R/W\# (WR\#) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 1 | UD2 | UD1 | X | DH $^{\prime}$ |

UD2, UD1: Assign different double height formats, they are applicable to different line display modes when DH bit in command "Function Set" $=1$.
Note that UD1 $=0$ and UD2=0 are forbidden in 2 -line display mode, while UD1 $=0$ is forbidden in 3 -line display mode.
Table 7-2: Double Height Display According to UD2 andUD1 Bits (when DH=1)

| UD2 | UD1 | Character Displays |
| :---: | :---: | :---: |
| 0 | 0 |  |
| 0 | 1 |  |
| 1 | 0 |  |
| 1 | 1 |  |

DH': Display shift enable selection bit.
When $\mathrm{DH}^{\prime}=$ "High", display shift per line enabled.
When $\mathrm{DH}^{\prime}=$ "Low", smooth dot scroll enabled.

### 7.1.8 Shift/Scroll Enable (IS =1, RE = 1, SD=0)

Shift Enable - DH' = 1

| D/C\# | R/W\# (WR\#) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 1 | DS4 | DS3 | DS2 | DS1 |

DS: Display shift per line enable this instruction selects shifting line to be shifted according to each line mode in display shift right/left instruction. DS1, DS2, DS3 and DS4 indicate each line to be shifted, and each shift is performed individually in each line.
If DS1 and DS2 are set to "High" (enable) in 2 line mode, $1^{\text {st }}$ line and $2^{\text {nd }}$ line are shifted. If all the DS bits (DS1 to DS4) are set to "Low" (disable), no shift is observed on the display.

Scroll Enable - DH' = $\mathbf{0}$

| D/C\# | R/W\# (WR\#) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 1 | HS4 | HS3 | HS2 | HS1 |

HS: Horizontal scroll per line enable
This command makes valid dot shift by a display line unit. HS1, HS2, HS3 and HS4 indicate each line to be dot scrolled, and each scroll is performed individually in each line.
If scroll the line in 1 -line display mode, set HS1 to "High".
If the $2^{\text {nd }}$ line scroll is needed in 2-line mode, set HS2 to "High" (refer to Table 7-3).
Note: DH' bit is in command "Double Height (4-line) / Display-dot shift"

Table 7-3: Relationship between DS and COM signal

| Enable Bit | Enabled Common Signals During Shift |  |
| :---: | :---: | :--- |
| HS1 / DS1 | COM0 - COM7 | Description |
| HS2 / DS2 | COM8 - COM15 | The part of display line that corresponds to enabled common <br> signal can be shifted. |
| HS3 / DS3 | COM16 - COM23 |  |
| HS4 / DS4 | COM24 - COM31 |  |

### 7.1.9 Function Set (IS = X, RE = 0 or 1, $\mathrm{SD}=0$ )

$\mathbf{R E}=\mathbf{0}$

| D/C\# | R/W\# (WR\#) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 | X | N | DH | $\mathrm{RE}(0)$ | IS |

N : Display line number control bit
When $\mathrm{N}=$ "Low", 1 -line display mode (for $\mathrm{NW}=0$ ), or 3 -line display mode (for $\mathrm{NW}=1$ ).
When $N=$ "High", 2 -line display mode is set (for NW=0), or 4 -line display mode (for NW=1).
DH: When DH= "High", UD2=1 and UD1=1 Double height font type control bit for 2 line mode:
Table 7-4: Double Height display when DH=1, UD2=1 and UD1=1


When DH= "Low", Double height font type control is disabled.
RE: Extended function registers enable bit
At this instruction, RE must be "Low".
IS: Special registers enable bit
RE = 1

| D/C\# | R/W\# (WR\#) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 | X | N | BE | RE(1) | REV |

N : Display line number control bit
When $\mathrm{N}=$ "Low", 1 -line display mode (for $\mathrm{NW}=0$ ), or 3 -line display mode (for $\mathrm{NW}=1$ ).
When $N=$ "High", 2 -line display mode is set (for NW=0), or 4 -line display mode (for NW=1).
BE: CGRAM data blink enable bit
If BE is "High", it makes user font of CGRAM blink. The quantity of blink is assigned at the highest 2 bit of CGRAM. If BE is "Low" CGRAM blink is disabled.
RE: Extended function registers enable bit
At this instruction, RE must be "High".
When RE = "High", the following control bits / commands can be accessed:

- BDC/ BDS control bits of Entry Mode Set command,
- HS / DS control bits of Shift / Scroll enable commands,
- UD2/UD1/DH' control bits of Double height (4-line) / Display-dot Shift command,
- SQ control bits of Set Scroll Quantity command, and
- BE / REV control bits of function set register can be accessed.

REV: Reverse enable bit
When REV = "High", all the display data are reversed. Namely, all the white dots become black and black dots become white.
When REV = "Low", the display mode set normal display.

### 7.1.10 Set CGRAM Address ( $I S=0, R E=0, S D=0$ )

| D/C\# | R/W\# (WR\#) | D7 | D6 | D5 | D4 | D3 | D2 | D1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 |

Set CGRAM address to AC. This command makes CGRAM data available from MPU.

### 7.1.11 Set DDRAM Address $(I S=X, R E=0, S D=0)$

| D/C\# | R/W\# (WR\#) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 |

Set DDRAM address to AC. This command makes DDRAM data available from MPU.

- In 1 -line display mode ( $\mathrm{N}=0, \mathrm{NW}=0$ ), DDRAM address is from " 00 H " to " $4 \mathrm{FH}^{\prime}$ ".
- In 2-line display mode ( $\mathrm{N}=1, \mathrm{NW}=0$ ), DDRAM address in the 1st line is from " $00 \mathrm{H}^{\prime \prime}$ - " 27 H ", and DDRAM address in the 2nd line is from " 40 H " - " 67 H ".
- In 3 -line display mode ( $\mathrm{N}=0, \mathrm{NW}=1$ ), DDRAM address is from " $00 \mathrm{H}^{\prime}$ - " 13 H " in the 1 st line, from " 20 H " to " 33 H " in the 2 nd line and from " 40 H " - " 53 H " in the 3rd line.
- In 4-line display mode ( $\mathrm{N}=1, \mathrm{NW}=1$ ), DDRAM address is from " 00 H " - " 13 H " in the 1 st line, from " 20 H " to " 33 H " in the 2 nd line, from " 40 H " - " 53 H " in the 3rd line and from " 60 H " - " 73 H " in the 4th line.

Details refer to Section 5.11.

### 7.1.12 Set Scroll Quantity (IS = X, RE = 1, SD=0)

| $\mathrm{D} / \mathrm{C} \#$ | $\mathrm{R} / \mathrm{W} \#(\mathrm{WR} \#)$ | D 7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | X | SQ 5 | SQ4 | SQ3 | SQ2 | SQ1 | SQ0 |

As set SQ5 to SQ0, horizontal scroll quantity can be controlled in dot units (Refer to Table 7-5). In this case US2066 can show hidden areas of DDRAM by executing smooth scroll from 1 to 48 dots.

Table 7-5: Scroll Quantity According to HDS Bits

| SQ5 | SQ4 | SQ3 | SQ2 | SQ1 | SQ0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | Function |
| 0 | 0 | 0 | 0 | 0 | 1 | Shifft left by 1-dot |
| 0 | 0 | 0 | 0 | 1 | 0 | Shift left by 2-dot |
| 0 | 0 | 0 | 0 | 1 | 1 | Shift left by 3-dot |
| . | . | . | . | . | . | . |
| . | . | . | . | . | . | . |
| . | . | . | . | . | . | . |
| 1 | 0 | 1 | 1 | 1 | 1 | Shift left by 47-dot |
| 1 | 1 | $X$ | $X$ | X | X | Shift left by 48-dot |

### 7.1.13 Read Busy Flag \& Address (IS = X, RE = X, SD=0)

| D/C\# | R/W\# (WR\#) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | BF | AC6/ID6 | AC5/ID5 | AC4/ID4 | AC3/ID3 | AC2/ID2 | AC1/ID1 | AC0/ID0 |

This command shows whether US2066 is in internal operation or not. If the resultant BF is High, it means the internal operation is in progress. Then wait until BF is Low before the next instruction can be performed.

The value of address counter or the part ID can be read through this command. When first time run this command, the address counter can be read. When this command is run for second time, the part ID can be read (refer to Figure 7-2).

| Part Number | Part ID |
| :---: | :---: |
| US2066 | 0100001 b |

Figure 7-2: Read Busy Flag \& Address/ Part ID (6800 - parallel interface)


### 7.1.14 Write Data to RAM (IS $=X, R E=X, S D=0$ )

| D/C\# | R/W\# (WR\#) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |

Write binary 8-bit data to DDRAM/CGRAM. The selection of RAM from DDRAM or CGRAM is set by the previous address setting command: "Set DDRAM address" or "Set CGRAM address". RAM set instruction can also determine the AC direction to RAM. After write operation, the address is automatically increased / decreased by 1 , according to the entry mode.

### 7.1.15 Read Data from RAM (IS $=X, R E=X, S D=0$ )

| D/C\# | R/W\# (WR\#) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |

Read binary 8-bit data from DDRAM/CGRAM. The selection of RAM is set by the previous address set instruction. If address set instruction of RAM is not performed before this instruction, the data that read first is invalid, because the direction of AC is not determined.

If RAM data is read several times without RAM address set instruction before read operation, correct RAM data can be got from the second, but the first data would be incorrect, because there is no time margin to transfer RAM data.

In case of DDRAM read operation, cursor shift instruction plays the same role as DDRAM address set instruction: it also transfer RAM data to output data register. After read operation, address counter is automatically increased/decreased by 1 according to the entry mode. After CGRAM read operation, display shift may not be executed correctly.

In case of RAM write operation, after this AC is increased/decreased by 1 like read operation. In this time, AC indicates the next address position, but only the previous data can be read by read instruction.

In order to match the operating frequency of the DDRAM with that of the MCU, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read.

### 7.2 Extended Command Set

### 7.2.1 Function Selection A [71h] (IS = X, RE = 1, SD=0)

This double byte command enable or disable the internal $\mathrm{V}_{\mathrm{DD}}$ regulator at $5 \mathrm{~V} \mathrm{I} / \mathrm{O}$ application mode.
The internal $\mathrm{V}_{\mathrm{DD}}$ is enabled as default by data 5 Ch , whereas it is disabled if the data sequence is set as 00 h .

### 7.2.2 Function Selection B [72h] (IS = X, RE = 1, SD=0)

Beside using ROM[1:0] and OPR[1:0] hardware pins, the character number of the Character Generator RAM and the character ROM can be selected through this command, details refer to

Table 6-2.

### 7.2.3 OLED Characterization [78H/79h] (IS = X, RE = 1, SD=0 or 1)

This single byte command is used to select the OLED command set. When SD is set to 0 b , OLED command set is disabled. When SD is set to 1 b , OLED command set is enabled.

### 7.3 OLED Command Set

### 7.3.1 Set Contrast Control (81h)

This command sets the Contrast Setting of the display. The chip has 256 contrast steps from 00 h to FFh . The segment output current increases as the contrast step value increases.

### 7.3.2 Set Display Clock Divide Ratio/ Oscillator Frequency (D5h)

This command consists of two functions:

- Display Clock Divide Ratio (D)(A[3:0])

Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 16 , with reset value $=1$. Please refer to section 5.3 for the details relationship of DCLK and CLK.

- Oscillator Frequency (A[7:4])

Program the oscillator frequency Fosc that is the source of CLK if CLS pin is pulled high. The 4-bit value results in 16 different frequency settings. The default setting is 0111b.

### 7.3.3 Set Phase Length (D9h)

This double byte command sets the length of phase 1 and 2 of segment waveform of the driver.

- Phase 1 (A[3:0]): Set the period from 2 to 32 in the unit of DCLKs.
- Phase $2(A[7: 4])$ : Set the period from 1 to 15 in the unit of DCLKs.


### 7.3.4 Set SEG Pins Hardware Configuration (DAh)

This double byte command changes the mapping between the display data column address and the segment driver. It allows flexibility in OLED module design. Please refer to Table 6-4.

This command only affects subsequent data input. Data already stored in DDRAM will have no changes.

### 7.3.5 Set $\mathbf{V}_{\text {сомн }}$ Deselect Level (DBh)

This command adjusts the $\mathrm{V}_{\mathrm{COMH}}$ regulator output.

### 7.3.6 Set VSL / GPIO (DCh)

This double byte command consists of two functions:

- Set VSL (A[7])

External VSL is enabled when $A[7]$ is set to 1 b , whereas it is set to internal VSL as default at $\mathrm{A}[7]=0 \mathrm{~b}$.

- Set the states of GPIO (A[1:0])

The state of GPIO can be defined by control bits A[1:0]; refer to Table 6-3 for details.

### 7.3.7 Set fade Out Blinking (23h)

This command allows to set the fade mode and adjust the time interval for each fade step. Below figures show the example of Fade Out mode and Blinking mode.

Figure 7-3 : Example of Fade Out mode


Figure 7-4 : Example of Blinking mode


## 8 Maximum Ratings

Table 8-1 : Maximum Ratings (Voltage Referenced to $\mathbf{V}_{\mathrm{ss}}$ )

| Symbol | Parameter | Value | Unit |
| :--- | :--- | :--- | :--- |
| $\mathrm{V}_{\mathrm{DDIO}}$ | Supply Voltage | -0.3 to +6 | V |
| $\mathrm{~V}_{\mathrm{DD}}$ |  | -0.3 to +6 | V |
| $\mathrm{~V}_{\mathrm{CC}}$ |  | 0 to 16 | V |
| $\mathrm{~V}_{\text {SEG }}$ | SEG output voltage | 0 to $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{\mathrm{COM}}$ | COM output voltage | 0 to $0.9^{*} \mathrm{~V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{\text {in }}$ | Input voltage | $\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$ | V |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating Temperature | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {sta }}$ | Storage Temperature Range | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than masimum rated voltages to this high impedance circuit. Reliability of operation is enhanced if unused input is connected to an appropriate logic voltage level (e.g. either $\mathrm{V}_{\mathrm{SS}}$ or $\mathrm{V}_{\mathrm{DDIO}}$ ). Unused outputs must be left open.

This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

## 9 DC CHARACTERISTICS

## Condition (Unless otherwise specified):

Voltage referenced to $\mathrm{V}_{\mathrm{SS}}$,
$\mathrm{V}_{\text {DDIO }}=2.4 \mathrm{~V}$ to 3.6 V ,
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Table 9-1 : DC Characteristics

| Symbol | Parameter | Test Condition |  | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {C }}$ | Operating Voltage | - |  | 8 | - | 15 | V |
| $\mathrm{V}_{\text {DDI }}$ | Low voltage power supply, power supply for I/O pins | Low Voltage I/O Application |  | 2.4 | - | 3.6 | V |
|  |  | 5V I/O Application |  | 4.4 | - | 5.5 | V |
| $V_{D D}$ | Logic Supply Voltage | Low Voltage I/O Application |  | 2.4 | - | 3.6 | V |
|  |  | 5V I/O Application (V $\mathrm{V}_{\text {DD }}$ as output) |  | - | - | - | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Logic Output Level | $\mathrm{I}_{\text {Out }}=100 \mathrm{uA}, 3.3 \mathrm{MHz}$ |  | $0.9 \times \mathrm{V}_{\text {DIIO }}$ | - | - | V |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Logic Output Level | $\mathrm{I}_{\text {Out }}=100 \mathrm{uA}, 3.3 \mathrm{MHz}$ |  | - | - | $0.1 \times \mathrm{V}_{\text {DDIO }}$ | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Logic Input Level | - |  | $0.8 \times \mathrm{V}_{\text {DII }}$ | - | - | V |
| $\mathrm{V}_{\text {IL }}$ | Low Logic Input Level | - |  | - | - | $0.2 \times \mathrm{V}_{\text {DIIO }}$ | V |
| ISLP _VDD | $\mathrm{V}_{\mathrm{DD}}$ Sleep mode Current | $\mathrm{V}_{\text {DDIO }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=$ <br> $\mathrm{V}_{\mathrm{DD}}$ (external: LV I/ <br> Display OFF, No pan | OFF <br> O mode) $=3.3 \mathrm{~V}$, nel attached | - | - | 10 | uA |
| $\mathrm{I}_{\text {LP_VDDIo }}$ | $\mathrm{V}_{\text {DIIo }}$ Sleep mode Current | $\begin{aligned} & \mathrm{V}_{\text {DDIo }}=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{OFF} \\ & \text { Display OFF, } \\ & \text { No panel attached } \\ & \hline \end{aligned}$ | Ext $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ | - | ${ }^{-}$ | 10 | uA |
|  |  | $\mathrm{V}_{\text {DDIO }}=5 \mathrm{~V},$ <br> $\mathrm{V}_{\mathrm{CC}}=\mathrm{OFF}$ <br> Display OFF, <br> No panel attached | Enable Internal $\mathrm{V}_{\mathrm{DD}}$ during Sleep mode (at 5 V I/O mode) | - | 60 | TBD | uA |
|  |  |  | Disable Internal $V_{D D}$ during Sleep mode (Deep Sleep mode) | - | - | 10 | uA |
| IsLP_vcc | $\mathrm{V}_{\text {cc }}$ Sleep mode Current | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=8 \sim 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DDIO}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}(\mathrm{e} \\ & \text { or } \\ & \mathrm{V}_{\text {DDIO }}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}} \text { (int } \\ & \text { Display OFF, No par } \end{aligned}$ | (external) = 3.3V, <br> ternal) <br> nel attached | - | - | 10 | uA |
| $\mathrm{I}_{\mathrm{CC}}$ | $\mathrm{V}_{\text {CC }}$ Supply Current <br> $\mathrm{V}_{\mathrm{DDIO}}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=12$, Contr <br> $\mathrm{I}_{\text {REF }}=15 \mathrm{uA}$, No loading, Display ON, | st = FFh, <br> All ON |  | - | 560 | 670 | uA |
| $\mathrm{I}_{\text {DDI }}$ | $\mathrm{V}_{\text {DDIO }}$ Supply Current <br> $\mathrm{V}_{\mathrm{CC}}=12$, Contrast $=\mathrm{FFh}$, <br> $\mathrm{I}_{\text {REF }}=15 \mathrm{uA}$, No loading, Display <br> ON, All ON | $\begin{aligned} & \mathrm{V}_{\mathrm{DDIO}}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \text { (Low Voltage I/O Application) } \\ & \hline \end{aligned}$ |  | - | 2 | 5 | uA |
|  |  | $\left.\mathrm{V}_{\text {DDIO }}=5 \mathrm{~V} \text { (Internal } \mathrm{V}_{\mathrm{DD}}\right)$(5V I/O Application) |  | - | 130 | 160 | uA |
| $\mathrm{I}_{\mathrm{D}}$ | $V_{D D}$ Supply Current <br> $\mathrm{V}_{\mathrm{DDIO}}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ (Low Voltage I/O Application), <br> $\mathrm{V}_{\mathrm{CC}}=12$, Contrast $=\mathrm{FFh}$, <br> $\mathrm{I}_{\text {REF }}=15 \mathrm{uA}$, No loading, Display ON, All ON |  |  | - | 90 | 110 | uA |
| $\mathrm{I}_{\text {SEG }}$ | Segment Output Current, $\mathrm{V}_{\text {DIIO }}=\mathrm{V}_{D D}=3.3 \mathrm{~V}$ (LV I/O) or <br> $\mathrm{V}_{\text {DII }}=5 \mathrm{~V}(5 \mathrm{~V}$ I/O), <br> $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=15 \mathrm{uA}$, <br> Display ON | Contrast=FFh |  | - | 450 | 550 |  |
|  |  | Contrast=AFh |  | - | 340 | - |  |
|  |  | Contrast=7Fh |  | - | 225 | - | uA |
|  |  | Contrast=3Fh |  | - | 112 | - |  |
|  |  | Contrast=0Fh |  | - | 56 | - |  |
| Dev | Segment output current uniformity | $\begin{aligned} & \text { Dev } \left.=\left(\mathrm{I}_{\text {SEG }}-\mathrm{I}_{\text {MID }}\right) /\right] \\ & \mathrm{I}_{\text {MID }}=\left(\mathrm{I}_{\text {MAX }}+\mathrm{I}_{\text {MIN }}\right) / \\ & \mathrm{I}_{\text {SEG }}[0: 99]=\text { Segme } \\ & \text { at contrast setting }= \end{aligned}$ | $\begin{aligned} & \hline \mathrm{I}_{\text {MID }} \\ & / 2 \\ & \text { ent current } \\ & =\mathrm{FFh} \\ & \hline \end{aligned}$ | -3 | - | 3 | \% |
| Adj. Dev | Adjacent pin output current uniformity (contrast setting = FFh) | Adj Dev = (I[n]-I[n | +1]) / (I[n]+I[n+1]) | -2 | - | 2 | \% |

## 10 AC Characteristics

### 10.1 AC Characteristics

## Conditions:

> Voltage referenced to $\mathrm{V}_{\mathrm{SS}}$
> $\mathrm{V}_{\mathrm{DDIO}}=2.4$ to 3.6 V (Low Voltage I/O Application) or $\mathrm{V}_{\mathrm{DDIO}}=4.4 \mathrm{~V}$ to 5.5 V ( 5 V I/O Application)
> $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Table 10-1: AC Characteristics

| Symbol | Parameter | Test Condition | Min. | Typ. | Max. | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{F}_{\mathrm{OSC}}{ }^{(1)}$ | Oscillation Frequency of <br> Display Timing Generator | $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ or Internal $\mathrm{V}_{\mathrm{DD}}$ | 454 | 505 | 556 | kHz |
| $\mathrm{F}_{\text {FRM }}$ | Frame Frequency for 32 MUX <br> Mode | $100 \times 32$ 4-line Character Display <br> Mode, Display ON, <br> Internal Oscillator Enabled | - | $\mathrm{F}_{\mathrm{OSC}} * 1 /(\mathrm{D} * \mathrm{~K} * 32)^{(2)}$ | - | Hz |
| $\mathrm{t}_{\text {RES }}$ | Reset low pulse width (RES\#) | - | 2000 | - | - | ns |

## Note

${ }^{(1)} F_{\text {Osc }}$ stands for the frequency value of the internal oscillator and the value is measured when command $B 3 h A[7: 4]$ is in default value.
(2) D: Divide ratio

K: Phase 1 period + Phase 2 period $+\mathrm{K}_{\mathrm{o}}$, where $\mathrm{K}_{\mathrm{o}}=126$
Default K is $18+7+126=151$

WiseChip Semiconductor Inc.

### 10.2 6800-Series MCU Parallel Interface Timing Characteristics

Table 10-2: 6800-Series MCU Parallel Timing Characteristics

| Symbol | Parameter | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {cycle }}$ | Clock Cycle Time (write cycle) | 400 | - | - | ns |
| $\mathrm{t}_{\text {AS }}$ | Address Setup Time | 13 | - | - | ns |
| $\mathrm{t}_{\text {AH }}$ | Address Hold Time | 17 | - | - | ns |
| $\mathrm{t}_{\text {cS }}$ | Chip Select Time | 0 | - | - | ns |
| $\mathrm{t}_{\mathrm{CH}}$ | Chip Select Hold Time | 0 | - | - | ns |
| $\mathrm{t}_{\text {DSW }}$ | Write Data Setup Time | 35 | - | - | ns |
| $\mathrm{t}_{\text {DHW }}$ | Write Data Hold Time | 18 | - | - | ns |
| $\mathrm{t}_{\text {DHR }}$ | Read Data Hold Time | 13 | - | - | ns |
| $\mathrm{t}_{\mathrm{OH}}$ | Output Disable Time | 10 | - | 90 | ns |
| $\mathrm{t}_{\text {ACC }}$ | Access Time (RAM) <br> Access Time (command) | - | - | 125 | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$ |
| PW ${ }_{\text {CSL }}$ | Chip Select Low Pulse Width (read RAM) Chip Select Low Pulse Width (read Command) Chip Select Low Pulse Width (write) | $\begin{gathered} 250 \\ 250 \\ 50 \\ \hline \end{gathered}$ |  | - | $\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$ |
| PW ${ }_{\text {CSH }}$ | Chip Select High Pulse Width (read) Chip Select High Pulse Width (write) | $\begin{gathered} 155 \\ 55 \\ \hline \end{gathered}$ | - | - | $\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$ |
| $\mathrm{t}_{\mathrm{R}}$ | Rise Time | - | - | 15 | ns |
| $\mathrm{t}_{\mathrm{F}}$ | Fall Time | - | - | 15 | ns |

## Note

${ }^{(1)}$ All timings are based on $20 \%$ to $80 \%$ of $\mathrm{V}_{\text {DDIO }}-\mathrm{V}_{\mathrm{SS}}$

Figure 10-1: 6800-series parallel interface characteristics (Form 1: CS\# low pulse width $>\mathrm{E}$ high pulse width)


Figure 10-2: 6800-series parallel interface characteristics (Form 2: CS\# low pulse width < E high pulse width)


WiseChip Semiconductor Inc.

### 10.3 8080-Series MCU Parallel Interface Timing Characteristics

Table 10-3 : 8080-Series MCU Parallel Interface Timing Characteristics
$\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{VDDIO}=2.4-3.6 / 4.5-5.5 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}\right.$ )

| Symbol | Parameter | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {cycle }}$ | Clock Cycle Time (write cycle) | 400 | - | - | ns |
| $\mathrm{t}_{\mathrm{AS}}$ | Address Setup Time | 13 | - | - | ns |
| $\mathrm{t}_{\text {AH }}$ | Address Hold Time | 17 | - | - | ns |
| $\mathrm{t}_{\mathrm{CS}}$ | Chip Select Time | 0 | - | - | ns |
| $\mathrm{t}_{\text {CSH }}$ | Chip select hold time to read signal | 0 | - | - | ns |
| $\mathrm{t}_{\text {CSF }}$ | Chip select hold time | 0 | - | - | ns |
| $\mathrm{t}_{\text {DSW }}$ | Write Data Setup Time | 35 | - | - | ns |
| $\mathrm{t}_{\text {DHW }}$ | Write Data Hold Time | 18 | - | - | ns |
| $\mathrm{t}_{\text {DHR }}$ | Read Data Hold Time | 13 | - | - | ns |
| $\mathrm{t}_{\mathrm{HH}}$ | Output Disable Time | 10 | - | 70 | ns |
| $\mathrm{t}_{\text {ACC }}$ | Access Time (RAM) <br> Access Time (command) | - | - | 125 | ns |
| PW ${ }_{\text {CSL }}$ | Chip Select Low Pulse Width (read RAM) - tpwlr Chip Select Low Pulse Width (read Command) - $\mathrm{t}_{\text {PWLR }}$ Chip Select Low Pulse Width (write) - $\mathrm{t}_{\text {PWLw }}$ | $\begin{gathered} \hline 250 \\ 250 \\ 50 \\ \hline \end{gathered}$ | - | - | $\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$ |
| PW ${ }_{\text {CSH }}$ | Chip Select High Pulse Width (read) - $\mathrm{t}_{\text {PWHR }}$ Chip Select High Pulse Width (write) - $\mathrm{t}_{\text {PWHW }}$ | $\begin{gathered} 155 \\ 55 \\ \hline \end{gathered}$ | - | - | $\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$ |
| $\mathrm{t}_{\mathrm{R}}$ | Rise Time | - | - | 15 | ns |
| $\mathrm{t}_{\mathrm{F}}$ | Fall Time | - | - | 15 | ns |

Figure 10-3: 8080-series parallel interface characteristics


### 10.4 Serial Interface Timing Characteristics

Table 10-4 : Serial Timing Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {DDIO }}=2.4-3.6 / 4.5-5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}\right.$ )

| Symbol | Parameter | Min | Typ | Max | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{c}}$ | Serial clock cycle time | 1 | - | 20 | us |
| $\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$ | Serial clock rise/fall time | - | - | 15 | ns |
| $\mathrm{t}_{\mathrm{w}}$ | Serial clock width (high, low) | 400 | - | - | ns |
| $\mathrm{t}_{\mathrm{su} 1}$ | Chip select setup time | 60 | - | - | ns |
| $\mathrm{t}_{\mathrm{h} 1}$ | Chip select hold time | 20 | - | - | ns |
| $\mathrm{t}_{\mathrm{su2}}$ | Serial input data setup time | 200 | - | - | ns |
| $\mathrm{t}_{\mathrm{h} 2}$ | Serial input data hold time | TBD | - | - | ns |
| $\mathrm{t}_{\mathrm{D}}$ | Serial output data delay time | - | - | TBD | ns |
| $\mathrm{t}_{\mathrm{DH}}$ | Serial output data hold time | 10 | - | - | ns |

Note: All timings are based on $20 \%$ to $80 \%$ of $\mathrm{V}_{\text {DDIO }}-\mathrm{V}_{\mathrm{SS}}$

Figure 10-4 : Serial Timing Characteristics

10.5 $I^{2} C$ Timing Characteristics

Table 10-5 : $\mathrm{I}^{2} \mathrm{C}$ Timing Characteristics
( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {DDIO }}=2.4-3.6 / 4.5-5.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$ )

| Symbol | Parameter | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {cycle }}$ | Clock Cycle Time | 2.5 | - | - | us |
| $\mathrm{t}_{\text {HSTART }}$ | Start condition Hold Time | 0.6 | - | - | us |
| $\mathrm{t}_{\text {HD }}$ | Data Hold Time (for "SDA out" $^{\text {pin) }}$ | 5 | - | - | ns |
|  | Data Hold Time (for "SDA ${ }_{\text {IN }}$ " pin) | 300 | - | - | ns |
| $\mathrm{t}_{\text {SD }}$ | Data Setup Time | 100 | - | - | ns |
| $\mathrm{t}_{\text {SSTART }}$ | Start condition Setup Time (Only relevant for a repeated Start condition) | 0.6 | - | - | us |
| $\mathrm{t}_{\text {SSTOP }}$ | Stop condition Setup Time | 0.6 | - | - | us |
| $\mathrm{t}_{\mathrm{R}}$ | Rise Time for data and clock pin | - | - | 300 | ns |
| $\mathrm{t}_{\mathrm{F}}$ | Fall Time for data and clock pin | - | - | 300 | ns |
| $\mathrm{t}_{\text {IDLE }}$ | Idle Time before a new transmission can start | 1.3 | - | - | us |

Note: All timings are based on $20 \%$ to $80 \%$ of $\mathrm{V}_{\text {DDIO }}-\mathrm{V}_{\mathrm{SS}}$
Figure 10-5 : I2C Timing Characteristics


WiseChip Semiconductor Inc.

## 11 Application Example

Figure 11-1 : Application Example of US2066
The configuration for $\mathrm{I}^{2} \mathrm{C}$ interface mode is shown in the following diagram:
$\left(\mathrm{V}_{\mathrm{DDIO}}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=15 \mathrm{uA}\right)$


Pin connected to MCU interface: $\mathrm{D}[2: 0]$, RES\#
Pin internally connected to $\mathrm{V}_{\mathrm{SS}}$ : $\mathrm{D}[7: 3], B S 0, B S 2, E, R / W \#, C S \#, C L, O P R 0, ~ O P R 1$
Pin internally connected to $\mathrm{V}_{\mathrm{DD}}$ : BS1, CLS, SHLC, SHLS, ROM0, ROM1
TR[9:0] should be left open.
D/C\# acts as SAO for slave address selection ${ }^{(3)}$
C1, C2: 4.7uF ${ }^{(1)}$
C3, C4: 1.0uF ${ }^{(1)}$ place close to IC $V_{\text {DDIo }} / V_{D D}$ and $V_{\text {SS }}$ pins on PCB
$\mathrm{R}_{\mathrm{p}}$ : Pull up resistor
Voltage at $\mathrm{I}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}}-4.5 \mathrm{~V}$. For $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=15 \mathrm{uA}$ :
$R 1=\left(\right.$ Voltage at $\left.I_{\text {REF }}-V_{\text {SS }}\right) / I_{\text {REF }}$
$\approx(12-4.5) \mathrm{V} / 15 \mathrm{uA}$
$=500 \mathrm{~K} \Omega$

## Note

${ }^{(1)}$ The capacitor value is recommended value. Select appropriate value against module application.
${ }^{(2)}$ Die gold bump face down.
${ }^{(3)}$ Refer to Section 5.1.4 for details.
${ }^{(4)}$ It is recommended to tie $\mathrm{V}_{\mathrm{LSS}}$ and $\mathrm{V}_{\text {SS }}$ at one common ground point to minimize circulating ground noise.

## 12 US2066 CGROM Character Code

### 12.1 ROM A (ROM[1:0] = [0:0] )



Language: English, Irish, Spanish, Dutch (2), Danish, Norwegian, Swedish, Finnish, Czech (7), Slovene, Hungarian (2), Turkish (1) The number in the parentheses is showing how many letters might be needed to build and define additionally. The darker background is showing the maximum addresses those could be allocated by $\operatorname{OPR}[1: 0]$ setting.
12.2 ROM B (ROM[1:0] = [0:1] )


Language: English, Irish, Portuguese, Spanish, French (1), Italian, German, Dutch (2), Icelandic, Danish, Norwegian, Swedish, Polish (8), Czech (8), Hungarian (2), Romanian (5), Turkish, Vietnamese (6), Russian (Small Letters)
The number in the parentheses is showing how many letters might be needed to build and define additionally. The darker background is showing the maximum addresses those could be allocated by OPR[1:0] setting.

### 12.3 ROM C (ROM[1:0] = [1:0])



Language: English, Dutch (2), Japanese, Greek (Small Letters)
The number in the parentheses is showing how many letters might be needed to build and define additionally. The darker background is showing the maximum addresses those could be allocated by OPR[1:0] setting.

